
Run-Time Verification of Optimistic

Concurrency

Ali Sezgin1, Serdar Tasiran1, Kivanc Muslu1, and Shaz Qadeer2

1 Koc University, Istanbul, Turkey
{asezgin,kmuslu,stasiran}@ku.edu.tr

2 Microsoft Research, Redmond, WA, USA
qadeer@microsoft.com

Abstract. Assertion based specifications are not suitable for optimistic
concurrency where concurrent operations are performed assuming no
conflict among threads and correctness is cast in terms of the absence or
presence of conflicts that happen in the future. What is needed is a for-
malism that allows expressing constraints about the future. In previous
work, we introduced tressa claims and incorporated prophecy variables
as one such formalism. We investigated static verification of tressa claims
and how tressa claims improve reduction proofs.

In this paper, we consider tressa claims in the run-time verification
of optimistic concurrency implementations. We formalize, via a simple
grammar, the annotation of a program with tressa claims. Our method
relieves the user from dealing with explicit manipulation of prophecy
variables. We demonstrate the use of tressa claims in expressing complex
properties with simple syntax.

We develop a run-time verification framework which enables the user
to evaluate the correctness of tressa claims. To this end, we first describe
the algorithms for monitor synthesis which can be used to evaluate the
satisfaction of a tressa claim over a given execution. We then describe our
tool implementing these algorithms. We report our initial test results.

1 Introduction

The main challenge in reasoning about concurrent programs is taking into ac-
count the interactions among threads on shared memory. An effective way to
cope with the complexity of concurrent shared-memory programming is to spec-
ify and verify partial safety properties which are typically expressed as assertions
over program variables.

For implementations based on optimistic concurrency, our experience suggests
that expressing properties about concurrency control mechanisms in the form
of assertions is unnatural and counter-intuitive. In optimistic concurrency, a
thread accesses a shared resource as if there are no competing threads for the
same resource and eventually validates whether this assumption was correct.
If it was, then it commits ; if not, it rolls-back any visible global change and,
optionally, re-starts. Correctness in these implementations, such as those of non-
blocking data structures or Software Transactional Memories (STM’s) [1], cannot

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 384–398, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Run-Time Verification of Optimistic Concurrency 385

be easily expressed as variations of assertions. Instead, one needs to express the
desired properties in terms of future behavior, for instance, what needs to hold
at the present program state if the method call or transaction completes without
conflict.

In our previous work [2], we have introduced tressa claims and incorporated
prophecy variables in order to relate the program state at which a tressa claim
is executed to the rest of the execution. Our objective was to simplify the use
of qed [3] in reduction proofs of optimistic concurrent programs. Intuitively,
tressaϕ(p) executed at state s expresses the belief that ϕ(p) holds at s as long as
the rest of the execution agrees with the current value of the prophecy variable
p. For instance, imagine that the (boolean) return value res of a method m is
mapped to the prophecy variable, pRes: An execution of m returns true iff pRes
is equal to true during the execution of m. Then, the expression tressa pRes ⇒ φ
executed at state s claims that φ at s is required to hold only in those executions
in which m returns true.

In this paper, we investigate the tressa construct with an eye towards specifi-
cation and run-time verification. Tressa claims are suitable for specifying prop-
erties for optimistic concurrency because they provide a means to relate the
outcome of a sequence of events yet to occur with the program state at which
the tressa claim is executed. Reading in contrapositive form, the tressa claim
of the previous paragraph expresses the requirement that if φ is false, then m
should return false. This pattern appears often in optimistic concurrency if, for
instance, φ expresses non-interference.

Instead of cluttering our specification methodology by prophecy variables, we
define a grammar for expressing tressa claims. It is possible to address the value
last/first written to or read from a variable by a particular subset of all active
threads, or the value of a variable immediately after a desired method terminates.
For instance, the above tressa claim would be replaced with tressaExit(res) ⇒
x = y, where Exit(res) is the value of res immediately after m terminates.
Thanks to this approach, the user is not required to look for and then annotate
the proper places in the code where prophecy variables have to be managed, a
process which is both error-prone and tedious.

The truth value of a tressa claim is a function of the program state where
the tressa claim occurs and the execution suffix following this occurrence. Given
the rather simple semantics, they are amenable to low complexity run-time ver-
ification which could help uncover subtle bugs of concurrency. Accordingly, we
develop a run-time verification tool for tressa claim based specifications. We first
describe monitor synthesis algorithms. We show that the complexity of monitor
synthesis is linear in the sum of the size of the tressa claims checked during the
execution.

We then present our framework which implements these algorithms. Our im-
plementation is built on top of the Chess tool [4]. Chess allows complete cov-
erage of interleaving executions up to a desired bound on the number of context
switches. Since the number of context switches as well as the number of different
variables and threads that manifest interesting bugs are typically small [5], the

386 A. Sezgin et al.

use of Chess makes our tool stronger than random testing, that is, synthesiz-
ing tressa monitors over random interleavings. We demonstrate our tool over a
sample of interesting implementations.

Related Work. The specification formalisms to generate monitors for run-time
verification usually employ a variant of linear temporal logic, LTL [6,7,8]. As non-
regular properties cannot be expressed in LTL, more expressive formalizations
have recently been developed [9,10,11]. Our formalization is not more expressive
than the latter formalizations; the strength in our approach comes from two
aspects. First, tressa claims have a relatively simple syntax with intuitive con-
structs. This we believe will lead to a short learning phase. Second, the constructs
we use transfer the burden of identifying, in the code, places corresponding to an
event of interest from the user to the run-time verification tool. This removes the
possibility of incomplete or erroneous annotation (with auxiliary variables) by
the user. As far as the complexity of monitor synthesis and run-time verification
is concerned, we propose an on-the-fly algorithm of linear time complexity in
the number of tressa claims and of logarithmic space complexity in the length
of the execution, on par with other recent work [9,10].

2 Motivation

In this section, we will give an example where assertion based reasoning fails to
capture the natural correctness requirement.

Specifications with tressa claims. Consider the code given in Fig. 1 which
is a simplified version of an atomic snapshot algorithm (e.g., [12]). The snapshot
algorithm aims at obtaining a consistent view of a set (here, a pair) of addresses
shared among concurrent threads each of which might either be trying to take

public Pair Snapshot(int a, int b)
{
int va, vb, da, db;
boolean s = true;

atomic{ va = m[a].v; da = m[a].d; } // Rda
atomic{ vb = m[b].v; db = m[b].d; } // Rdb

// if method is to succeed, da and db form a consistent snapshot.

atomic{ if (va<m[a].v) { s = false; } } // Vala
atomic{ if (vb<m[b].v) { s = false; } } // Valb

if (s) { return new Pair(da,db); } // Comm
else { return null; } // Abrt

}

public void Write(int a, int d)
{
atomic{ m[a].d = d; m[a].v ++; }

}

Fig. 1. A collection that implements an atomic read of two distinct variables, Snapshot,
and random access updates, Write

Run-Time Verification of Optimistic Concurrency 387

a snapshot or updating a shared address. For convenience, we assume that code
blocks tagged with atomic are executed atomically (without interleaving).

The method Snapshot takes in two addresses, and tries to return a consistent
pair of values stored in these two addresses. In any lock-based implementation,
shared variables are accessed only after obtaining their exclusive ownership, e.g.,
via locks. This implementation, however, uses optimistic concurrency because as
m[b] is being read (line Rdb), the lock for m[a] is not owned and any thread
is free to update m[a]’s value. This is an absence of conflict assumption which
needs to be eventually validated (the second round of reads of the same addresses
at lines Vala and Valb). Each location is assumed to contain a version number
which is incremented whenever a value is written by a call to Write. It is this
version number which Snapshot uses in validation: a different (greater value)
version number than the local copy indicates that its copy of the address is
stale.

A correct snapshot algorithm should either terminate unsuccessfully and re-
turn a default value such as null, or, it should appear to take an instantaneous
snapshot (of m[a].d and m[b].d) and return the values read. The implementa-
tion in Fig. 1 is correct in this sense. Intuitively, if the version number m[a].v
has not been incremented by another concurrent write between lines Rda and
Vala, then it is ensured that m[a].d is unchanged in this time interval, and
m[a].d is equal to da. A similar argument holds for lines Rdb, Valb, m[b].d and
db. It is most natural to put a claim about this desired property at the point in
the program where it needs to hold, i.e., between Rdb and Vala.

Observe that if Snapshot is to terminate successfully, it must be the case
that m[a].d= da and m[b].d=db between the lines Rdb and Vala. However, this
guarantee is not about the past or the execution prefix, but rather of possible
future behavior or the execution suffix. As such, any assertion, which can only
relate execution prefixes to program states, placed between the first pair of reads
and the rest of the method will fail to capture this property. For instance, we
cannot assert s==>(da==m[a].d) between Vala and Valb because immediately
after m[a] is found to be untouched (local and global version numbers are found
to be equal at Vala), a context switch might occur and another thread might
update m[a] which will violate the assertion. Assertions before Vala or after
Valb will fail in a similar manner to express the desired property.

Generalizing the above arguments for arbitrary optimistic concurrency imple-
mentations, we can state that typically the programmer will need to specify a
condition to be satisfied at the present state where the condition itself depends
on the rest of the execution. For this class of specifications, we propose the use
of tressa claims. Simply put, a tressa claim holds true only if the remaining part
of the execution conforms to the claim. Capturing the remaining part of the
execution is accomplished via special constructs (prophecy variables) denoting
values of variables attained after a certain event occurs. This enables us to relate
the present state to the eventual outcome and express the desired correctness
property naturally.

388 A. Sezgin et al.

...

atomic{ vb = m[b].v; db = m[b].d; }

tressa Exit(s) ==> (da==m[a].d && db==m[b].d);

atomic{ if (va<m[a].v) { s = false; } }

...

Fig. 2. A possible specification for Snapshot expressed in terms of future behavior

Now, consider the modification given in Fig. 2 containing a tressa claim. The
claim states that if the method commits (in the future) (Exit(s), which denotes
the value of s when Snapshot terminates, is true), the current values of the
pair of da and db will constitute a consistent snapshot of addresses a and b.
The claim is located where we expect the condition to hold and (the implicit
prophecy variable) Exit(s) allows the claim to be checked for only successfully
terminating Snapshot executions.

da=1
db=2
//tressa fails

s=true

m[a].d=1

m[a].v++

m[b].d=2

m[b].v++

da=1
db=0

//tressa fails

s=true

...

...

Tx Tu Tv Ty

Fig. 3. An interleaving that exhibits an inconsistent snapshot

Bug Manifestation. In order to illustrate how tressa claims can help distin-
guish faulty behavior from correct ones, consider another implementation which
uses the same Snapshot method, but has a broken non-atomic Write whose
body is given as:

m[a].d = d; atomic{ m[a].v ++; }

That is, in the Write method, there can be arbitrarily many actions between
the update of the data value, m[a].d, and the incrementing of the version num-
ber, m[a].v. This is a faulty implementation and the tressa claim we introduced
in Fig. 2 will be violated in some executions and thus catch the bug. Incidentally,
the underlying correctness criterion for our sample implementation is lineariz-
ability [13], but a discussion on linearizability goes beyond the scope of this paper.
This buggy version allows executions which cannot be linearized, an example of
which is given below.

Consider the execution given in Fig. 3. Dashed arrows represent time flow,
each column represents the execution of a thread whose id is given at the top

Run-Time Verification of Optimistic Concurrency 389

of each column and each row corresponds to a time instant when one of these
threads makes a transition. In this sample execution, threads Tx and Ty execute
Snapshot(a,b), taking snapshots of addresses a and b. Threads Tu and Tv ex-
ecute Write(a) and Write(b) updating the contents of a and b, respectively.
Assume that the initial value of each address is 0.

Thread Tx reads 0 for m[a].d, 2 for m[b].d. Thread Ty reads 1 for m[a].d,
0 for m[b].d. Since the version numbers are updated non-atomically, in this
particular execution, both snapshot methods will conclude success and return
their snapshot. However, both of the returned snapshots is inconsistent in any
possible linearization of this sequence. This is an erroneous execution and the
tressa should fail; it indeed does. When the tressa claim is evaluated in thread
Tx, Exit(s) is true, because Tx does not observe any of the updates done by Tu
and Tv and ends Snapshot deciding non-interference (s is set to true when Tx
terminates), but da (0) is not equal to the current value of m[a].d (1). Similarly,
the tressa of thread Ty also fails as its copy of Exit(s) is also true but the values
of db (0) and m[b].d (2) are not equal.

Once the violation is generated, the user will be presented with the counter
example which clearly identifies the failing tressa claims. Since the tressa claim
depends on the outcome of the Snapshot method, and the values held in da
and db after executing Rdb, its failure means that even though there was an
interference from concurrent threads, the validation part of Snapshot failed to
detect this. This would point to two possible sources of failure: (i) the validation
part is erroneous, or (ii) the interference is not properly reported. In our case,
it is the latter and the tressa violation helps the user identify the nature of the
bug.

The tressa claim we gave above was an approximate specification of lineariz-
ability (or atomicity). This is for illustration purposes only. We will present other
examples of tressa claims which express properties tailored to the implementation
under consideration and not just general correctness criteria like linearizability.

3 Formalization

Programs. A concurrent program text is a collection of procedures, where each
procedure is written according to a given grammar representing the underlying
programming language. Each procedure has well-defined entry and exit points.
Each well-formed sentence in the programming language assumed to be executing
atomically is called a statement. A program is a mapping from a set of live threads
T id to the procedures of the program text. Intuitively, a program identifies
which thread is running which procedure. We imagine a potentially infinite set
of program states. Each program state holds all the necessary control information
and the valuation of each program variable. We ignore the details of how this
information is encoded in a program state. We distinguish a subset of program
states, called the initial states, which are intuitively those states from which a
program can start its execution.

Each program generates a set of runs, alternating sequences of program states
and dynamic statements. For t ∈ T id and s a statement, the pair (t, s) is called

390 A. Sezgin et al.

a dynamic statement. Each run, q0
d1−→ q1 . . .

dn−→ qn, where qi’s represent states,
di’s represent dynamic statements, satisfies the usual initial and transition con-
ditions: The state q0 is an initial state and for each triple qi−1

di−→ qi, it is possible
to make a transition from program state qi−1 to qi by executing the dynamic
statement di. The semantics of each transition is governed by the programming
language.

Tressa Claims. A tressa claim is a special statement of the form tressaφ,
where tressa is assumed to be part of the programming language lexeme and φ
is a tressa predicate, an element of the set Pred whose syntax is given below.

Pred : ::= relk(Exprk) | Pred ∧ Pred | ¬Pred
Expr : ::= Term | fk(Exprk)
Term : ::= First(var,AType, tSet) | Last(var,AType, tSet, cond) | Exit(var) | var

AType : ::= Rd |Wr | RW

Each predicate is either the result of the application of some k-ary relation to k
expressions (Expr) or a boolean combination of predicates. Each expression is
either some term (Term) or some k-ary function fk over expressions. AType is
the access type indicator: Rd is used for only read accesses, Wr for write accesses,
and RW for read or write accesses.

Example. Our example is drawn from software transactional memory implemen-
tations. Consider the code given in Fig. 4, snippets from a program intended as
a test harness for the Bartok STM implementation [14]. It starts by initializing
the transaction (DTM.Start). The value stored in the shared object o1 is then
transactionally read (DTM.OpenForRead) and this read value incremented by 1
is then transactionally written (DTM.OpenForUpdate) into o2. We require that if
the transaction succeeds after doing these two operations, the values in o1 and
o2 turn out to be exactly as updated by this transaction, i.e., (o1.d)+1=o2.d.
This is expressed by the first tressa claim. We also require that an object that is
only read (not updated) in a transaction should have its value constant through-
out the execution span of a transaction that commits. In our code, o1 is one such
object and the second tressa claim expresses this property.

As another interesting property, we want to express correct roll-back in the
case of aborting a transaction. In our STM, each update is logged in a thread
local list. As a variable is updated, an entry is inserted into this list, specifying
the overwritten value. Then, to roll back the changes made to the shared address
space, the list is traversed in reverse order, canceling the effect of each update
until all the variable values are restored. In order to express correct undoing,
we record the value of o2.d prior to the update done by this transaction in the
local variable pre_start. We then require that the very last value written by
an aborting transaction be equal to the initial value kept in pre_start. Notice
that, due to the possibly more than one entry in the log list for o2.d, it would
be harder to express this property using either assertions or temporal logical
formulations.

Run-Time Verification of Optimistic Concurrency 391

public void Foo(Xact Tx) {
...

DTM.Start(Tx); //Transaction Tx starts

...

DTM.OpenForRead(Tx, o1);

tmp = o1.d;

tmp = tmp + 1;

...

DTM.OpenForUpdate(Tx, o2);

pre_start = o2.d;

o2.d = tmp;

tressa (Exit(success) ==> (o2.d == o1.d + 1);

...

// At every later read of o1.d

tressa (Exit(success) ==> (tmp == o1.d + 1));

...

success = DTM.Commit(Tx); // Transaction Tx attempts to commit.

// success==true if it commits.

if (!success) {
done = false;

tressa (Last(o2,Wr,{this},done)==pre_start);
DTM.UndoUpdates(Tx);

done = true;

}
}

Fig. 4. Specifying properties in a code built on the Bartok STM

Semantics. We will describe the valuation of each term using diagrams. For the
following, we say that a dynamic statement (t, st) matches (v, a, T) if t ∈ T , st
accesses v and the access type agrees with the access-type a.

First(v, a, T) denotes the value of the variable v after the first occurrence of
a matching dynamic statement in the execution suffix. If the action sequence
represented by δ above does not contain any dynamic statement that matches
(v, a, T), the value of the term is the value written (or the value read) by dj , as
the wavy line suggests. If no such dj exists, First(v, a, T) = ⊥.

392 A. Sezgin et al.

Last(v, a, T, c) denotes the value of the variable v after the last occurrence of
a matching dynamic statement prior to c becoming true. In the diagram above,
we assume that all djl

match (v, a, T) but only the very last one, djk
, determines

the value of Last(v, a, T, c). If c stays false until termination or no matching
statement occurs prior to c becoming true, Last(v, a, T, c) = ⊥.

Exit(v) denotes the value of the variable v immediately after the procedure
p in which the term occurs terminates. In the diagram above, letting t denote
the thread which executed the instruction containing Exit(v), we assume that
the number of calls to p and that of returns from p executed by t are equal
(recursion is allowed). If the execution blocks before p terminates, Exit(v) = ⊥.

A tressa claim is ready in a run if none of its terms evaluates to ⊥. A program
run violates tressaφ if tressaφ occurs during the run, the tressa claim is ready
and φ evaluates to false. A program p satisfies a tressa claim tc if no instance of
p has a run violating tc.

Let us further illustrate our formalization with the following example. Assume
that φ is given as First(v, Rd, T id) = Last(x, Wr, {t}, done) and let (t, tressaφ) be
the dynamic statement executed at qi.

In the above diagram, we assume that the dashed lines represent sequences
of statements that match neither (v, Rd, T id) nor (x, Wr, {t}). At qj , an update
to x is done by t, but since this is not the last matching statement prior to done
becoming true, its value is ignored. Then, at qk, the dynamic statement that
matches (v, Rd, T id) occurs. The value of v returned by this read determines the
value of First(v, Rd, T id) which we assume to be 5. At ql, another update to x is
done by t. According to the diagram, this is the last update to x by t prior to
done becoming true at qm+1. Thus, Last(x, Wr, {t}, done) = 3 in this run. Since
all the terms of φ are determined by the execution segment ending at qm+1, φ
can be evaluated, which is found to be false. Thus, tressa φ fails. It is important
to note that we need the execution segment qi . . . qm+1 to evaluate the tressa
claim but the claim itself fails at qi+1.

4 Run-Time Verification

In this section, we first describe the algorithms we use to check tressa claims
over a given run. Then, we give an overview of the implementation of these
algorithms.

Run-Time Verification of Optimistic Concurrency 393

4.1 Monitoring Algorithm

In this section, we explain how a tressa claim occurring in a given run can
be evaluated. We present an algorithm that manipulates the tressa claims it
observes throughout the course of an execution. We first explain what is being
done at each transition, then delve into specific operations.

Algorithm 1. Monitoring Transitions
1: procedure Step(dstmt)
2: for all te ∈ TressaTable do
3: te.termSet← EvalTerms(te.termSet,dstmt)
4: end for
5: for all pred ∈ ParseStmt(dstmt) do
6: InitTressa(pred)
7: end for
8: for all te ∈ TressaTable do
9: if te.termSet = ∅ then

10: Check(te)
11: Remove te from TressaTable
12: end if
13: end for
14: end procedure

Algorithm 1 shows the three phases that the monitor performs by each transi-
tion. It gets the label of the transition, the dynamic statement dstmt, as an input
parameter. All the tressa claims which have been seen so far in the execution and
whose value is not yet determined are kept in the TressaTable. In the first phase
(lines 2-4), TressaTable is traversed and each term whose value is yet to be deter-
mined is analyzed and any of its terms that becomes determined is evaluated (line
3). In the second phase (lines 5-7), all the tressa claims that occur in dstmt are han-
dled. In the third and final phase (lines 8-13), the tressa claims whose value can be
calculated after this transition are found (line 9), their value is calculated (line 10)
and is removed fromTressaTable (line 11). We should point out that the implemen-
tation of this algorithm is slightly different where each variable points to the set of
terms that are affected by the accesses to that variable. Then, instead of checking
all live tressa claims, only those terms which depend on the accessed variables are
checked. We used this alternative algorithm for ease of presentation.

Algorithm 2 shows how a new tressa claim is handled. Each entry in the
TressaTable holds the predicate of the tressa claim and a set containing all the
distinct terms of the predicate. These are assigned to a new entry, tressaEntry,
at lines 2 and 3, respectively. Then, all the Val-terms are evaluated (lines 6-7)
and each of these terms are removed from the set of undetermined terms (line
8). For all other term types, the value of the term is set to ⊥ (line 9-10). For
the Exitterms, we record the most recent value of the variable mentioned in
the term (line 12-13). The resulting entry is inserted into the TressaTable (line
14). Observe that if a tressa claim has only Val-terms, its value is ready to be
evaluated immediately after it occurs in the execution.

394 A. Sezgin et al.

Algorithm 2. Initializing for a New Tressa
1: procedure InitTressa(pred)
2: tressaEntry.pred← pred
3: tressaEntry.termSet← Parse(pred)
4: termSet← tressaEntry.termSet
5: for all term ∈ termSet do
6: if IsVTerm(term) then
7: term.val← EvalVTerm(term)
8: tressaEntry.termSet← tressaEntry.termSet \ {term}
9: else

10: term.val← ⊥
11: end if
12: if IsETerm(term) then
13: term.preval← Eval(term)
14: end if
15: end for
16: Insert tressaEntry into TressaTable
17: end procedure

Algorithm 3 shows how a set of terms is evaluated. It receives as input a term
set, termSet, and a dynamic statement, dstmt. Each term in termSet initially
has its value set to ⊥, denoting undetermined value. We evaluate each term
depending on its type and dstmt. For instance, if the term is a First-term and
if dstmt is a dynamic statement which matches the term (line 4), the value of
the term is evaluated and assigned to the term (line 5).1 Similar checks and
assignments are made for each type except for the Val type as their values were
already evaluated when the tressa was initialized as in Algorithm 2. If the term’s
value is determined, then it is removed from the set of undetermined terms (lines
13-14). The algorithm returns the new set of undetermined terms (line 17).

Algorithm 2 has time complexity linear in the length of the tressa claim where
the length of a tressa claim is given as the number of distinct terms the claim
contains. Algorithm 3 has time complexity linear in the number of terms the
parameter termSet contains because each call takes constant time. Algorithm 1
then has time complexity O(sizett) where sizett is the sum of the lengths of all
tressa claims observed throughout the execution. In terms of space complexity,
the only non-constant complexity comes from EvalETerm which counts the num-
ber of pending calls in case of recursion. This introduces a logarithmic space
complexity in the length of the execution.

4.2 Implementation

We start by giving an architectural overview of the implementation. We then
highlight several implementation related issues.

1 The call to EvalETerm is simplified. Due to recursion, we actually keep track of the
recursion depth by counting the number of pending calls.

Run-Time Verification of Optimistic Concurrency 395

Algorithm 3. Term Evaluation
1: procedure EvalTerms(termSet,dstmt)
2: cSet← termSet
3: for all term ∈ cSet do
4: if IsFTerm(term) ∧ IsCompat(term,dstmt) then
5: term.val← EvalFTerm(term,dstmt)
6: end if
7: if IsLTerm(term) ∧ IsCompat(term,dstmt) then
8: term.val← EvalLTerm(term,dstmt)
9: end if

10: if IsETerm(term) ∧ IsCompat(term,dstmt) then
11: term.val← EvalETerm(term,dstmt)
12: end if
13: if term.val �= ⊥ then
14: termSet← termSet \ term
15: end if
16: end for
17: return termSet
18: end procedure

Architecture. Figure 5 gives an operational description of our testing frame-
work. In the first phase, the user annotates the test harness s/he wishes to verify
with tressa claims according to a partial specification of correctness. The test
harness is the input program wrapped with a specific test scenario. We currently
accept programs written in c#, but in principle, any program written for the
.net framework can be easily handled.

In the second phase, we perform controlled executions of the given program.
The annotated program is first processed by the Tressa library. The tressa library
contains the code implementing the monitoring algorithm explained in Sec. 4.1.
The output of this process, the original test harness along with its monitors,
is fed into Chess. The Chess tool is responsible for two main tasks. First, it
explores all possible interleavings of the Test Input (see below). Second, as each

Fig. 5. The architectural diagram of the testing framework

396 A. Sezgin et al.

interleaving is being executed, all memory accesses and method calls and exits
are reported as events back to the Tressa library.

Tressa claims are evaluated as soon as they can be evaluated per the algorithm
given in Sec. 4.1. If the tressa claim is satisfied, no further action is taken.
Otherwise, the execution halts with a report specifying the failing tressa. Chess
can then be used to reproduce the failing execution for the analysis of the bug.

The Chess Tool [4]. The use of Chess is rather simple. The programmer spec-
ifies a particular test scenario on which s/he would like to check the outcome of
her/his program. Chess then runs the scenario so that all possible interleavings,
up to a bound on the number of context switches specified by the programmer,
are explored. It is well known that a concurrent program typically manifests its
bug with only a few context switches over a few variables [4,5]. Thus, a small
scenario with a context switch bound of two is likely to unravel subtle concur-
rency bugs. Case in point, the counter-example we gave in Sec. 2 for the buggy
implementation (see Fig. 3), there is a single context switch per thread, there
are four threads and two distinct addresses. Complete coverage of a set of in-
terleavings reduces one degree of uncertainty about the outcome of a test-case.
The user is still responsible for coming up with a scenario and a correct bound
that would uncover the bug, but the additional uncertainty about whether the
correct schedule would be chanced is removed.

Conceptually, Chess achieves complete coverage by placing semaphores prior
to all accesses to volatile variables or calls to synchronization methods from the
C# System.Threading namespace such as the Thread.Start() method used for
creating a thread or the Thread.Join() method used for waiting for a child
thread to terminate. The places where semaphores are placed are the candidate
context switching points. As Chess explores a particular interleaving, each time
a candidate context switching point is reached, exactly one semaphore is put
in a non-blocking state which forces the scheduler to choose the desired thread.
Chess records down the set of interleavings it has already explored and as long
as there remain unexplored interleavings, it resets the test harness, runs the
program according to a new interleaving. A detailed explanation of the exact
mechanism is beyond the scope of this paper.

The Tressa Library. The crux of the implementation lies in the Tressa library
which implements the monitoring algorithm of Sec. 4.1. Tressa claims are gener-
ated by constructing a Tressa object whose constructor takes in its predicate in
the form of a string. This string is then parsed into its constituent terms. Each
term has a reference to the Tressa object it is part of. Additionally, for each of
its terms, a handle denoting the term (its type and contents) and the variable
referred to in the term is inserted into a global table.

An additional feature of Chess has been crucial in the operation of the moni-
tor implemented in the Tressa Library. As Chess explores a particular execution,
it keeps track of the relevant synchronization operations via an event generation
mechanism. Each memory access, method call, method return and the like gen-
erate events which are then caught by Chess in order to have complete control

Run-Time Verification of Optimistic Concurrency 397

over the execution of the Test Input. We are making use of these events to
instrument each memory access as well as the method calls/returns so that the
monitoring algorithm is called at every relevant transition. For instance, every
time a variable is read, it generates an event which supplies the address accessed,
the value read. Thus, accesses to variables are instrumented. As a variable is ac-
cessed, it is checked whether there are terms dependent on it by inspecting the
global table for an entry for that variable. If the variable’s entry is non-empty,
for each term in its entry, a check is performed to see whether the term becomes
determined. This step can be seen as a call to the Step with the instrumented
instruction as its input parameter, dstmt.

Following the algorithms given in Sec. 4.1, when a term becomes determined,
it is removed from the variable’s entry. For each term about to be removed, we
also check whether the owning tressa claim has still undetermined terms. If all
the terms of a tressa claim become determined, the truth value of the predicate
is calculated. If the predicate evaluates to false, the violation along with the
tressa claim causing it is reported. Thanks to the bug reproduction capability
of the Chess tool, the user can then trace the buggy execution to see what the
cause for the violation is. Currently, the Tressa library is implemented in C#.
We are using the CLR wrapper of Chess, and the overall system is run under the
.NET framework.

5 Experiments

In this section, we report our experience with an initial proof-of-concept imple-
mentation where instrumentation of memory accesses is done manually. We are
currently working on automating the instrumentation and will provide a public
release of the implementation.

We have tried our framework on three programs: the atomic snapshot imple-
mentation (see Sec. 2), a concurrent stack implementation [15] and a model of
the Bartok STM [14]. We ran the examples on a Mac laptop with 1GB of RAM
running at 2.8GHz.

In the atomic snapshot implementation, we have tried both the correct and
the buggy versions on the test scenario given in Fig. 3. As expected, thanks to
full coverage provided by Chess, the bug was caught by our implementation
after exploring 191 different schedules. The correct implementation generated
no violations in 979 total schedules which is the total number of schedules with
at most two context switches per thread.

For the concurrent stack, we ran a test scenario of three threads, two of them
pushing five elements, the third popping five elements. In the push method we
placed the tressa claim tressa First(top, Wr, {t}) = Val(n) which expressed the
property that the first write by the thread t currently executing the method into
the stack (top) is equal to the element with which push is called (n). Contrary
to our expectations, the tressa failed after 113 schedules. The reason was due to
an elimination round which bypasses pushing if there is a concurrently pending
pop operation. This example highlights that even deceptively simple looking

398 A. Sezgin et al.

tressa claims can be valuable tools in comprehending or debugging concurrent
implementations. Later correcting this incorrect tressa claim removed the failure.

In the Bartok model, we uncovered a subtle bug by running a scenario with
two threads, each running a transaction of at most two instructions. The bug
was caught after 104 schedules, which takes about ten seconds, by the tressa
claim tressa o.owner �= t∧o.IsOwned⇒ ¬Exit(s). This claim, placed after a read
of o, states that if o is currently owned by some other transaction, then this
transaction should not commit. Corrected version was verified after completing
all 112 possible schedules in approximately ten seconds.

References

1. Larus, J.R., Rajwar, R.: Transactional Memory. Morgan & Claypool (2006)
2. Sezgin, A., Tasiran, S., Qadeer, S.: Tressa: Claiming the future. In: VSTTE (2010)
3. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL 2009,

pp. 2–15. ACM, New York (2009)
4. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding

and reproducing heisenbugs in concurrent programs. In: Draves, R., van Renesse,
R. (eds.) OSDI, pp. 267–280 (2008)

5. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS, pp. 329–339 (2008)

6. Pnueli, A.: The temporal logic of programs. In: FOCS 1977: Foundations of Com-
puter Science, pp. 46–57 (1977)

7. Havelund, K., Goldberg, A.: Verify your runs. In: VSTTE, pp. 374–383 (2005)
8. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.

Program. 78, 293–303 (2009)
9. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-

tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 277–306.
Springer, Heidelberg (2004)

10. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime moni-
toring of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.)
FMICS 2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009)

11. Rosu, G., Chen, F., Ball, T.: Synthesizing monitors for safety properties: This time
with calls and returns. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 51–68.
Springer, Heidelberg (2008)

12. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

13. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

14. Harris, T.L., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions.
In: PLDI, pp. 14–25 (2006)

15. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. J.
Parallel Distrib. Comput. 70, 1–12 (2010)

	Run-Time Verification of Optimistic Concurrency
	Introduction
	Motivation
	Formalization
	Run-Time Verification
	Monitoring Algorithm
	Implementation

	Experiments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

