

IE
EE

Pr
oo

f

author would not have thought to run this incomplete test
and would have discovered the bug later, if at all.

CTSolstice makes debugging information available sooner.
CTSolstice enables live programming [8], [13], [40], [78]. While
debugging, developers often use print statements to view
intermediate program state and assist in understanding
behavior. CTSolstice makes the continuous testing console
output and error streams available to the developer. With
each edit, CTSolstice recomputed and redisplayed these logs,
giving near-instant feedback on how changes to the code
affected the print statements, even if the changes did not
affect the test result. The author felt this information signifi-
cantly simplified the debugging task.

CTSolstice is unobtrusive.During this debugging process, the
author never experienced a noticeable slowdown in Eclipse’s
operation and never observed a stale or wrong test result.

6.3.2 Solstice Continuous Testing Case Study

To further investigate how developers interact with Solstice
continuous analysis tools, we conducted a case study using
the Solstice continuous testing plug-in. This case study
investigates the following research questions:

RQ1: What is the perceived overhead for Solstice contin-
uous analysis tools?

RQ2: Do developers like using Solstice continuous analy-
sis tools?

The remainder of the section explains our case studymethod-
ology, presents the results, and discusses threats to validity.

Methodology. Each subject implemented a graph library
using test-driven development (TDD). The subject was given
skeleton .java files for the library, containing a complete
Javadoc specification and a comprehensive test suite of
93 tests. The method bodies were all empty, other than
throwing a RuntimeException to indicate that they have
not been implemented. Accordingly, all tests failed initially.
The subject’s task was to implement the library according to
the specification and to make all tests pass. The subjects were
asked not to change the specification and not to change, add,
or remove tests, but they could configure Eclipse as they
wished and could use the Internet throughout the task.

For the case study, we recruited 10 graduate students at
the University of Washington who were unfamiliar with our
research.3 Half of these subjects were randomly assigned to
use JUnit (base treatment) and the remaining half were
assigned to use the Solstice Continuous Testing plug-in. Sub-
jects had varying Java (1 to 12 years), JUnit (0 to 4 years), and
TDD (0 to 4 years) experience.

All sessionswere conducted in a computer lab4 at the Uni-
versity of Washington. After a 5-minute introduction that
explained the purpose of the study, each subject completed a
tutorial to learn the tool they would be using during the ses-
sion. Then, each subject implemented as much of the graph
library as possible within 60 minutes. We recorded the com-
puter screen and snapshotted the subject’s codebase each
time it was compiled. Finally, we conducted a written exit
survey, asking the subjects about their experience.

Results. The test suite executed in under one second
(unless the subject implemented methods that took unrea-
sonably long). This short test suite execution time is
appropriate for a small library and allowed us to answer
RQ1; a long-running test suite would have masked the
tool’s overhead. All subjects agreed that the continuous
testing results were always up to date (Fig. 10). In addi-
tion to the Likert-scale questions in Fig. 10, the exit survey
also had a free-from question that asked the subjects to
comment on their experience with the Solstice continuous
testing plug-in. For example, one subject commented: “I
really liked the fast feedback [from continuous testing].”
Although the computers were running screen-recording
software, two Eclipse instances, and a web browser, when
asked during the exit survey if test results had been up to
date, all five of the subjects agreed the results were up to
date and none complained about lag nor any other evi-
dence of overhead.

During the case study, we observed how developers
interacted with Solstice continuous testing. After the tuto-
rial, three developers (out of five) started using the tool as
we expected, by repeating the following steps:

1) select a failure from the Test Failures view,
2) investigate the corresponding trace in the Trace-

view and navigate to the code locations using
hyperlinks,

3) make the required code changes, and
4) verify that the failure is fixed (or discover that it is

not) by looking at the updated results in the Test

Failures view.
One subject had issues with using the two different views:

she switched from the Trace view to the Javadoc view,
forgot to switch back, and was confused by not being able to
see the trace for the selected test failure. The last subject sim-
ply ignored the whole workflow as he was not used to using
tools that provide continuous feedback. Fig. 10 shows that
all but one of the subjects liked using Solstice continuous
testing. One subject commented: “I really enjoyed [using
Solstice continuous testing]! ...[Getting continuous feedback]
in a real language like Java was pretty cool.”

In addition to our qualitative results, we analyzed the
recorded development history of each subject. 84 test fail-
ures were fixed by at least one developer from each treat-
ment group. The Solstice continuous testing group fixed 52
of these failures faster, whereas the JUnit group fixed 38
faster. On average, JUnit subjects fixed 62 whereas Solstice
continuous testing subjects fixed 49 test failures. As the
size of our study was small, none of these results is statisti-
cally significant (all p > 0:05) according to the Mann-Whit-
ney U test.

In answering RQ2, we conclude that Solstice continuous
analyses tools are easy to use, intuitive, and unobtrusive.
While our small-scale study has not shown directly the

Fig. 10. Exit survey summary for the user study subjects who used
Solstice continuous testing.

3. Subjects were recruited through a standard IRB-approved pro-
cess. Participation in the study was compensated with a $20 gift card.

4. Computer specs: Intel i5-750: 2.67 GHz quad core CPU, network
drive, 4 GB memory, connected to a 30-inch display.

MUŞLU ET AL.: REDUCING FEEDBACK DELAY OF SOFTWARE DEVELOPMENT TOOLS VIA CONTINUOUS ANALYSIS 13

IE
EE

Pr
oo

f

benefits of continuous analysis tools, previous research has
done so [37], [40], [52], [65], and reverifying this claim is out-
side the scope of this work.

Availability of results for long-running analyses. Our case
study used a fast analysis: the time to execute the test suite
was under a second. However, executing continuously is
beneficial for all analyses, even long-running ones. Execut-
ing continuously reduces the cognitive load, since the devel-
oper neither has to decide when to run the analysis nor
predict when there will be a long enough break in activity
to complete the analysis. The continuous analysis eliminates
or reduces wait time when the developer desires the analy-
sis results. As discussed in Section 3.3, even potentially-stale
analysis results have value. Thus, every analysis should
be run continuously, under reasonable assumptions: the
analysis process is run at low priority to avoid slowing
down the developer’s IDE, electrical power is less costly
than the developer’s time, and the UI that presents the
results is non-obtrusive.

Given that any amount of increased availability of analy-
sis results is beneficial, we ask how often would those anal-
ysis results be available. This section investigates our case
study data in a quantitative experiment to estimate the
availability of results from long-running Solstice continuous
analyses. We focus on the following research question:

RQ3: How does the run time of an Ao affect the availabil-
ity of its results to the corresponding Ac?

Using the development history (snapshots) of case study
participants, we computed the percent availability and the
average staleness of each of the four Solstice analyses of
Section 6.2. Percent availability is the ratio of the total time
the analysis results are up to date to the the total develop-
ment time. Average staleness is the average value for how
stale the currently-displayed results are (how long it has
been since they were up to date), where up-to-date results
are treated as 0 seconds stale.

We assume immediately-interrupting and display-stale
(recall Section 3) implementations. The number of develop-
ment snapshots is equal to the number of edits that yielded
a compilable project. The analysis results become up to date
if the developer pauses longer than "a þ TAo , where:

"a : the continuous analysis result delay (Definition 5).
TAo : underlying Ao run time.
"a and TAo values are taken from Fig. 5. The analysis

results become stale immediately at the beginning of the
next snapshot.

Fig. 11 shows the developer edits and the availability of
each analysis as a timeline, for one of the case study partici-
pants. We did this computation for each case study partici-
pant. We provide similar figures for the other participants,
and the raw data at https://bitbucket.org/kivancmuslu/
solstice/downloads/analysis_availability.zip.

Fig. 12 shows percent availability and average staleness
of each Solstice analysis, averaged over all case study partic-
ipants. Although the run time of an Ao has a negative effect
on the availability of the corresponding Ac, long-running
Solstice analyses would still be beneficial during develop-
ment. Data race detection results are up to date 5 percent of
the time.

Threats to Validity. We assess our evaluation activities in
terms of simple characterizations of internal and external
validity. Internal validity refers to the completeness and the
correctness of the data collected through the case studies.
External validity refers to the generalizability of our results
to other settings.

As in other research, the possibility of a bug in the tools is
a threat to internal validity. Seeing incorrect information
could confuse and slow down the developers. However, we
received no negative feedback about correctness.

The selection of the subject program, a simple graph
library, poses a threat to external validity. Case study results
for this data structure may not generalize to other software.

The selection of the offline analysis, testing, poses another
threat to external validity. Case study results on how devel-
opers interact with continuous testing may not generalize to
other continuous analysis tools. However, we believe the
specific internal offline analysis does not affect the devel-
oper’s interaction with the continuous analysis tool.

Finally, the fact that all our subjects were PhD students
poses another threat to external validity. Case study results
for a particular developer population may not generalize

Fig. 11. Availability of Solstice analyses for one of the case study participants. The x-axis represents the development time in seconds. The vertical
lines represent developer edits that yielded compilable code. Solid lines on analyses rows represent the times that the corresponding analysis would
have shown up-to-date results during development. (Fig. 12 summarizes this data across all participants.)

Fig. 12. Ao run time, percent availability, and average staleness of each
Solstice continuous analysis, averaged over all case study participant
data. The results suggest that even a continuous long-running analysis
can provide value during development. (Fig. 11 shows an in-depth look
at a single participant.)

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

to other developer populations. However, none of the sub-
jects knew Solstice continuous testing before the case study
and their experiences with JUnit, Eclipse, and Java varied.
Most subjects had professional experience through intern-
ships in industry.

6.4 Alternate Implementation Strategies

There are ways other than maintaining a copy codebase
to convert offline analyses into continuous ones. Very fast
offline analyses can run in the IDE’s UI thread. While tech-
nically such an analysis would block the developer, the
developer would never notice the blocking because of its
speed. Most analyses are not fast enough for this approach
to be feasible.

It is possible to reduce the running time of an offline
analysis by making it incremental [64]. An incremental code
analysis takes as input the analysis result on an earlier snap-
shot of the code and the edits made since that snapshot.
Examples include differential static analyses [54], differen-
tial symbolic execution [62], and incremental checking of
data structure invariants [71]. When the differences are
small, incremental analyses can be significantly faster. With
this speed increase, incremental analyses may be used con-
tinuously by blocking the developer whenever the analysis
runs. Incremental code compilation [53] is one popular
incremental, continuous analysis integrated into many
IDEs. However, many analyses cannot be made incremental
efficiently because small code changes may force these anal-
yses to explore large, distant parts of the code. Further,
making an analysis incremental can be challenging, requir-
ing a complete analysis redesign. The process is similar to
asking someone to write an efficient, greedy algorithm that
solves a problem for which only an inefficient algorithm
that requires global information is known.

While many analyses cannot be made incremental or
efficient enough to run continuously while blocking the
developer, those that can still benefit from being built
using Codebase Replication. An impure analysis is freed
from the burden of maintaining a copy codebase, as Code-
base Replication maintains the copy codebase and lets the
analyses own it exclusively. Codebase Replication allows
long-running analyses to execute on a recent snapshot and
produce results that may be slightly stale, whereas other
approaches would not.

Codebase Replication uses a step-based execution model
to execute Ao on the copy codebase. Codebase Replication
could instead use a build tool, such as Apache Maven or
Ant, letting an analysis author declare howAo runs via build
files. Although using a build tool might further simplify the
Ac implementation, it would also limit Ac to the capabilities
of the build tool. Step-based execution permits the analysis
author to implement Ac using arbitrary Java code or to
defineAc as a one-step analysis that executes a build tool.

It is possible to implement memory-change-triggered
continuous analysis tools by combining a file-change contin-
uous analysis framework such as Incremental Project Build-
ers with tools that automatically save changes periodically
such as the Smart Save plug-in [72]. However, running an
analysis on a separate codebase has additional benefits. First,
the developer never experiences any unwanted side-effects,
such as crashes or code modifications due to impurity, of the

analysis. Second, for longer-running analyses, when there is
a conflicting developer edit, Codebase Replication can let
the analysis finish its execution on the copy codebase and
produce correct—albeit potentially stale—results.

7 RELATED WORK

This section places our work in the context of related
research. Section 7.1 discusses other approaches to building
continuous analysis tools and Section 7.2 discusses existing
continuous analysis tools and their benefits.

7.1 Building Continuous Analysis Tools

As we have described, an "-continuous analysis exhibits
both currency and isolation. Codebase Replication simpli-
fies building such analyses. Alternatively, developers can
build such tools by using IDEs’ APIs to listen to source
code edits. For example, Eclipse’s IResourceChange-

Listener [22] and IDocumentListener [21] APIs
broadcast file-level and memory-level changes, respec-
tively. Eclipse’s Java incremental compiler [27] and recon-
ciler compiler [26] use these APIs; however, these analyses
are written by the IDE developers, and building "-continu-
ous analyses using these primitive APIs is prohibitively dif-
ficult for third-party developers.

Some specialized development domains make building a
limited set of continuous analyses simple. For example, a
spreadsheet can be thought of as an IDE for data-intensive
programs that reruns these programs on every code or data
update. VisiProg [40], [52] proposed to extend this para-
digm to general programming languages, but Codebase
Replication is the first implementation that provides isola-
tion and currency. As another example, live programming
[8], [13], [78], which eases development by executing a fast-
running program on a specific input as that program is
being developed, is a special case of continuous analysis.

The rest of this section discusses alternate ways of creat-
ing continuous analysis tools and compares them to Code-
base Replication. None of the existing approaches provides
both isolation and currency, although some provide one or
the other.

7.1.1 Methods that Yield Limited Currency but Lack

Isolation

IDEs provide higher-level frameworks than the primitive lis-
teners described earlier. For example, to simplify implement-
ing build-triggered continuous analyses, Eclipse provides
Incremental Project Builders [23]. This mechanism can be
used to execute an analysis on the on-disk version of the pro-
gram every time the incremental compiler runs. (Note that
when auto-build is enabled in Eclipse, the code builds every
time it is saved to disk, so build-trigger becomes equivalent
to file-change-trigger.) This mechanism enables building
analyses that have some currency, although Codebase Repli-
cation’s memory-change access provides better currency by
enabling the analyses to run on a more recent version of the
program than one that has been saved to disk. Further, unlike
Codebase Replication, this mechanism does not allow
for analysis isolation. The analyses run on the developer’s
on-disk copy, meaning that an impure analysis’s changes

MUŞLU ET AL.: REDUCING FEEDBACK DELAY OF SOFTWARE DEVELOPMENT TOOLS VIA CONTINUOUS ANALYSIS 15

IE
EE

Pr
oo

f

directly alter the developer’s code, and a developer’s concur-
rent changesmay affect the analysis.

IDEs also provide frameworks that simplify building a
limited set of continuous analyses with memory-change
currency. For example, Eclipse’s Xtext [80] simplifies
extending Eclipse to handle new languages. Xtext provides
parsing, compilation, auto-complete, quick fix, and refactor-
ing support, but is limited to building language extensions.
Meanwhile Codebase Replication provides memory-change
currency for arbitrary source or binary code analyses. Simi-
larly to Incremental Project Builders, and unlike Codebase
Replication, Xtext does not allow for analysis isolation as a
developer’s concurrent changes may affect the analysis.
Further, Xtext does not support impure analyses.

7.1.2 Methods that Yield Limited Isolation but Lack

Currency

Integration servers, such as Jenkins [48], can enable certain
kinds of continuous analyses. An integration servermaintains
an isolated copy of the program under development and
automatically fetches new changes, builds the program, runs
static and dynamic analyses, and generates summaries for
developers and project managers. However, integration serv-
ers lack currency, as they cannot be memory-change- or file-
change-triggered; typically they are triggered periodically or
by events such as a commit. Modern collaboration portals,
such as github.com, bitbucket.org, and googlecode.com, inte-
grate awareness analyses and create interfaces for developers
to get feedback on the state of their programs. This is also a
step toward making analyses continuous, as the portals can
automate the running of analyses and can analyze multiple
developers’ codebases and notify the developers of analysis
results. However, this mechanism also lacks currency as
the analyses cannot be triggered by memory changes, file
changes, or evenmost version control operations.

IDEs provide APIs that serialize accesses to the codebase,
which can ensure partial isolation. For example, Eclipse pro-
vides a Jobs API [29] that enables third-party developers to
schedule jobs that access the codebase. There is no isolation:
these jobs either block each other and the developer edits,
or they occur concurrently on the same codebase. In con-
trast, Codebase Replication can run an analysis on the copy
codebase while letting the developer work, achieving true
isolation, and providing native support for impure continu-
ous analyses.

7.2 Existing Continuous Analysis Tools

Continuous analysis tools help developers by reducing the
notification delay of code changes’ effects on analysis
results. For example, continuous testing [65], [66], [67]
executes a program’s test suite as the program is being
developed. In a study, continuous testing made developers
three times as likely to finish programming tasks by a
deadline [66] and reduced the time needed to finish a task
by 10-15 percent [65]. Similarly, continuous data testing
greatly reduced data entry errors [59], and continuous com-
pilation made developers twice as likely to finish program-
ming tasks by a deadline [66]. Some continuous analyses
[11], [12], [39], [58] can be speculative [9] by predicting
developers’ likely future actions and executing them in the

background to inform the developers’ decision making.
Such tools have the potential to further increase the benefits
of continuous analyses.

Fig. 13 lists previous continuous analysis tools of which
we are aware. Although IDEs provide frameworks and
APIs to simplify the creation of continuous analyses, Fig. 13
shows that most existing third-party IDE-integrated contin-
uous analysis tools are not "-continuous, lacking either in
isolation or currency. From the 16 file-change-triggered and
build-triggered tools in Fig. 13, we selected the 7 with evi-
dence of development or maintenance within the last year
and contacted their developers to ask if they had considered
making their analyses run whenever the in-memory code
changes or compiles. We received responses from the
developers of 4 of the 7 tools, GoClipse, InPlace Activator,
TSLint, and TypeScript (TSLint and TypeScript are devel-
oped by an overlapping set of developers). All the develop-
ers thought making analyses continuous was a good idea,
with one remarking that this would be hard to do, another
that he didn’t have enough time to implement this feature,
and the third pointing out that part of the tool already has
this continuous behavior, although not all of the tool’s anal-
yses are continuous. We conclude that developers prefer to
build "-continuous tools for at least some analyses, but that
the effort required to build such tools prevents their
development.

Building an "-continuous analysis without Codebase
Replication is prohibitively difficult and results in poor
designs. As an example, an earlier Eclipse continuous test-
ing plug-in [67] is "-continuous, but making it "-continuous
required hacking into the core Eclipse plug-ins, so it does
not work with subsequent versions of Eclipse. As another
example, to achieve isolation, Quick Fix Scout [58] embeds
and maintains its own copy codebase in the developer’s
workspace, significantly complicating its design and imple-
mentation. Further, embedding replication logic inside the
analysis makes it difficult to debug the replication logic, as
bugs that break the synchronization between the copy code-
base and the developer’s codebase are difficult to isolate. In
contrast, as Section 6.2 has argued, Solstice makes it easier
to write Eclipse-integrated analyses that maintain isolation
and currency.

8 CONTRIBUTIONS

While useful to developers, continuous analyses are rare
because building them is difficult. We classified the major
design decisions in building continuous analysis tools, and
identified the major challenges of building continuous anal-
yses as isolation and currency. We designed Codebase Repli-
cation, which solves these challenges by maintaining an in-
sync copy of the developer’s code and giving continuous
analyses exclusive access to this copy codebase. We further
introduced a step-based execution model that improves
Codebase Replication’s currency. We have built Solstice, a
Codebase Replication prototype for Eclipse, and used it to
build four open-source, publicly-available continuous anal-
ysis Eclipse plug-ins. We have used these plug-ins to evalu-
ate Codebase Replication’s effectiveness and usability.

We have evaluated Codebase Replication (1) on perfor-
mance benchmarks, showing that Solstice-based tools have

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. X, XXXXX 2015

IE
EE

Pr
oo

f
negligible overhead and have access to the up-to-date code
with less than 2.5 milliseconds delay, (2) by building contin-
uous analysis tools, demonstrating that Codebase Replica-
tion and Solstice can be used for a variety of continuous
tools including testing, heuristic bug finding, and data race
detection and that the effort necessary to build new continu-
ous analysis tools is low (each tool required on average 710
LoC and 20 hours of implementation effort), and (3) with
case studies with developers that show that Solstice-based
tools are intuitive and easy-to-use.

Codebase Replication provides a simple alternative to
redesigning offline analysis logic to work continuously.
Overall, the cost of converting an offline analysis to a contin-
uous one with Codebase Replication is low. Further, the ben-
efits of continuous analysis tools greatly outweigh the cost of
building them with Codebase Replication. We believe that
Codebase Replication, and our implementation, will enable

developers to quickly and easily build continuous tools, and
will greatly increase the availability of such tools to develop-
ers. These tools will reduce the interruptions developers face
and the delay before developers learn the effects of their
changes, and consequently will positively impact software
quality and the developer experience.

ACKNOWLEDGMENTS

This work was funded by the US National Science Founda-
tion (NSF) grants CCF-0963757, CCF-1016701, and CCF-
1446683. Luke Swart worked on themarker visualization that
was used in the case study. Ezgi Mercan worked on an early
stage of the Solstice prototype implementation. The authors
thank Deepak Azad, Daniel Megert, and Stephan Herrmann
for their help with the Eclipse internals throughout Solstice
development.

Fig. 13. Previous continuous analysis tools, categorized according to the design dimensions of Section 3. The first six tools are "-continuous. The
continuous IDE plug-ins for language extensions provide parsing, compilation, auto-complete, quick fix, and/or refactoring support. “Developer” isola-
tion means that the developer is isolated from the changes made by an impure analysis, but the analysis is not isolated from the developer’s
changes; this is adequate for building only pure "-continuous analysis tools. For IDEs that support auto-build, build-triggered analyses are equivalent
to file-change-triggered analyses.

MUŞLU ET AL.: REDUCING FEEDBACK DELAY OF SOFTWARE DEVELOPMENT TOOLS VIA CONTINUOUS ANALYSIS 17

IE
EE

Pr
oo

f

REFERENCES

[1] Apache Ant. (2015, Jan. 29) [Online]. Available: http://ant.
apache.org/

[2] Apache Maven. (2015, Jan. 29) [Online]. Available: http://maven.
apache.org/

[3] AnsProlog programming environment. (2015, Feb. 23) [Online].
Available: https://github.com/robibbotson/APE/

[4] Extended ASM, a byte code manipulator. Distributed as part of
Annotation File Utilities. (2014, Sep. 21) [Online]. Available:
http://types.cs.washington.edu/annotation-file-utilities/

[5] An Eclipse plug-in supporting the Bio-PEPA domain specific lan-
guage. (2015, Feb. 13) [Online]. Available: https://github.com/
Bio-PEPA/Bio-PEPA/

[6] B. W. Boehm, Software Engineering Economics. Upper Saddle River,
NJ, USA: Prentice-Hall, 1981.

[7] C. Boekhoudt, “The big bang theory of IDEs,” Queue, vol. 1, no. 7,
pp. 74–82, Oct. 2003.

[8] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer,
“Example-centric programming: Integrating web search into the
development environment,” in Proc. 28th Conf. Human Factors
Comput. Syst., Atlanta, GA, USA, Apr. 2010, pp. 513–522.

[9] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative anal-
ysis: Exploring future states of software,” in Proc. Workshop Future
Softw. Eng. Res., Santa Fe, NM, USA, Nov. 2010, pp. 59–63.

[10] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Crystal: Precise
and unobtrusive conflict warnings,” in Proc. 8th Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng. Tool Demonstration Track,
Szeged, Hungary, Sep. 2011, pp. 444–447.

[11] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detec-
tion of collaboration conflicts,” in Proc. 8th Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., Szeged, Hungary, Sep. 2011,
pp. 168–178.

[12] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Early detection
of collaboration conflicts and risks ,” IEEE Trans. Softw. Eng., vol.
39, no. 10, pp. 1358–1375, Oct. 2013.

[13] M. M. Burnett, J. W. Atwood Jr., and Z. T. Welch, “Implementing
level 4 liveness in declarative visual programming languages,” in
Proc. Symp. Visual Lang., Sep. 1998, pp. 126–133.

[14] An Eclipse plug-in supporting the CAL domain specific language.
(2015, Feb. 13) [Online]. Available: https://github.com/levans/
Embedded-CAL/

[15] Check synchronization. (2014, Sep.) [Online]. Available: http://
www.cs.umd.edu/class/fall2004/cmsc433/checkSync.html

[16] Continuous analysis. (2015, Jan. 26) [Online]. Available: http://
www.klocwork.com/products/documentation/current/
Continuous_analysis

[17] Continuous testing for Visual Studio. (2014, Sep. 21) [Online].
Available: http://ox.no/software/continuoustesting/

[18] Crossword Sage. (2014, Sep. 21) [Online]. Available: http://sour-
ceforge.net/projects/crosswordsage/

[19] An Eclipse plug-in supporting the dLabPro domain specific lan-
guage. (2015, Feb. 13) [Online]. Available: https://github.com/
matthias-wolff/dLabPro-Plugin/

[20] An Eclipse plug-in supporting the LATEX domain specific lan-
guage. (2015, Feb. 13) [Online]. Available: https://github.com/
walware/docmlet/

[21] Eclipse API: IDocumentListener. (2014, Oct. 02) [Online]. Avail-
able: http://help.eclipse.org/topic/org.eclipse.platform.doc.isv/
reference/api/org/eclipse/jface/text/IDocumentListener.html

[22] Eclipse API: IResourceChangeListener. (2014, Oct. 02) [Online].
Available: http://help.eclipse.org/topic/org.eclipse.platform.
doc.isv/reference/api/org/eclipse/core/resources/IResource-
ChangeListener.html

[23] Eclipse project builders and natures. (2014, Sep. 21) [Online].
Available: http://www.eclipse.org/articles/Article-Builders/
builders.html

[24] Eclipse-Checkstyle integration. (2014, Sep. 21) [Online]. Available:
http://eclipse-cs.sourceforge.net/

[25] Eclipse: How do I use a model reconciler? (2015, Jan. 31) [Online].
Available: https://wiki.eclipse.org/FAQ_How_do_I_use_a_
model_reconciler%3F

[26] Eclipse: Java compile errors/warnings preferences. (2014, Sep. 21)
[Online]. Available: http://help.eclipse.org/topic/org.eclipse.jdt.
doc.user/reference/preferences/java/compiler/ref-preferences-
errors-warnings.htm

[27] Eclipse: JDT core component. (2014, Sep. 21) [Online]. Available:
http://www.eclipse.org/jdt/core/index.php

[28] Eclipse Metrics plug-in. (2014, Sep. 21) [Online]. Available:
http://sourceforge.net/projects/metrics/

[29] Eclipse: The jobs API. (2014, Sep. 21) [Online]. Available: http://
www.eclipse.org/articles/Article-Concurrency/jobs-api.html

[30] Eclipse: Views. (2014, Sep. 21) [Online]. Available: http://help.
eclipse.org/topic/org.eclipse.platform.doc.isv/reference/exten-
sion-points/org_eclipse_ui_views.html

[31] An Eclipse plug-in supporting the Haskell domain specific lan-
guage. (2015, Feb. 13) [Online]. Available: https://github.com/
JPMoresmau/eclipsefp/

[32] Embedded CAL. (2015, Feb. 13) [Online]. Available: https://
github.com/levans/Embedded-CAL/

[33] AnEclipse plug-in supporting the Ecoremetamodel. (2015, Feb. 13)
[Online]. Available: https://github.com/DevBoost/EMFText/

[34] eVHDL: Eclipse plug-in for developing VHDL code. (2014, Oct. 2)
[Online]. Available: https://github.com/HepaxCodex/eVHDL/

[35] FindBugs. (2014, Sep. 21) [Online]. Available: http://findbugs.
sourceforge.net/

[36] S. R. Foster, W. G. Griswold, and S. Lerner, “WitchDoctor: IDE
support for real-time auto-completion of refactorings,” in Proc.
34th Int. Conf. Softw. Eng., Zurich, Switzerland, Jun. 2012, pp. 222–
232.

[37] D. S. Glasser, “Test factoring with amock: Generating readable
unit tests from system tests,” Master’s thesis, Massachusetts Inst.
Technol., Boston, MA, USA, Aug. 2007.

[38] An Eclipse plug-in supporting the Go domain specific language.
(2015, Feb. 13) [Online]. Available: https://github.com/
GoClipse/goclipse/

[39] M. L. Guimar~aes, and A. R. Silva, “Improving early detection of
software merge conflicts,” in Proc. 34th Int. Conf. Softw. Eng.,
Zurich, Switzerland, Jun. 2012, pp. 342–352.

[40] P. Henderson and M. Weiser, “Continuous execution: The Visi-
Prog environment,” in Proc. 8th Int. Conf. Softw. Eng., London,
England, Aug. 1985, pp. 68–74.

[41] Hibernate Synchronizer. (2015, Feb. 13) [Online] Available:
https://github.com/jhudson8/hibernate-synchronizer/

[42] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proc. 34th Int. Conf. Softw. Eng.,
ICSE’12, Zurich, Switzerland, Jun. 2012, pp. 837–847.

[43] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Proc. 19th
Conf. Object-Oriented Programm. Syst., Language Appl., Vancouver,
BC, Canada, Oct. 2004, pp. 132–136.

[44] Hudson. (2014, Sep. 21) [Online]. Available: http://hudson-ci.
org/

[45] Infinitest. (2014, Sep. 21) [Online]. Available: http://infinitest.
github.io/

[46] InPlace Activator. (2015, Feb. 13) [Online]. Available: https://
github.com/eirikg/no.javatime.inplace/

[47] An Eclipse plug-in supporting the Blackberry Java domain spe-
cific language. (2015, Feb. 13) [Online]. Available: https://github.
com/blackberry/Eclipse-JDE/

[48] Jenkins. (2014, Sep. 21) [Online]. Available: http://jenkins-ci.org/
[49] Lustre plug-in for Eclipse with JKind analysis support. (2014, Oct. 2)

[Online]. Available: https://github.com/agacek/jkind-xtext/
[50] JSON Schema Validation. (2015, Feb. 13) [Online]. Available:

https://github.com/sabina-jung/JSON-Schema-Validation-
Eclipse/

[51] JUnitLoop. (2015, Feb. 13) [Online]. Available: https://github.
com/DevBoost/JUnitLoop/

[52] R. R. Karinthi and M. Weiser, “Incremental re-execution of pro-
grams,” in Proc. Symp. Interpreters Interpretive Tech., St. Paul, MN,
USA, 1987, pp. 38–44.

[53] H. Katzan Jr., “Batch, conversational, and incremental compilers,”
in Proc. Am. Fed. Inf. Process. Soc. Spring Joint Comput. Conf., Boston,
MA, USA,May 1969, pp. 47–56.

[54] S. K. Lahiri, K. Vaswani, and C. A. R. Hoare, “Differential static
analysis: Opportunities, applications, and challenges,” in Proc.
Workshop Future Softw. Eng. Res., Santa Fe, NM, USA, Nov. 2010,
pp. 201–204.

[55] Lighthouse. (2015, Feb. 13) [Online]. Available: https://github.
com/uci-sdcl/lighthouse/

[56] An Eclipse plug-in supporting the standard ML language. (2015,
Feb. 13) [Online]. Available: https://github.com/andriusvelykis/
ml-dev/

[57] K. Muşlu, Y. Brun, M. D. Ernst, and D. Notkin, “Making offline
analyses continuous,” in Proc. 9th Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., Saint Petersburg, Russia, Aug.
2013, pp. 323–333.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. X, XXXXX 2015

IE
EE

Pr
oo

f

[58] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin,
“Speculative analysis of integrated development environment rec-
ommendations,” in Proc. 3rd Conf. Object-Oriented Programm. Syst.,
Lang. Appl., Tucson, AZ, USA, Oct. 2012, pp. 669–682.

[59] K. Muşlu, Y. Brun, and A. Meliou, “Data debugging with continu-
ous testing ,” in Proc. 9th Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., New Ideas Track, Saint Petersburg, Russia, Aug.
2013, pp. 631–634.

[60] NCrunch. (2015, Jan. 26) [Online]. Available: http://www.
ncrunch.net/

[61] OcaIDE: OCaml plug-in for Eclipse. (2014, Oct. 2) [Online]. Avail-
able: https://github.com/nbros/OcaIDE/

[62] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu,
“Differential symbolic execution,” in Proc. 16th Symp. Found.
Softw. Eng., Atlanta, GA, USA, Nov. 2008, pp. 226–237.

[63] PMD. (2014, Sep. 21) [Online]. Available: http://pmd.source-
forge.net/

[64] G. Ramalingam and T. Reps, “A categorized bibliography on
incremental computation,” in Proc. 20th Symp. Principles
Programm. Lang., Charleston, SC, USA, Jan. 1993, pp. 502–510.

[65] D. Saff and M. D. Ernst, “Reducing wasted development time via
continuous testing,” in Proc. 14th Int. Symp. Softw. Rel. Eng.,
Denver, CO, USA, Nov. 2003, pp. 281–292.

[66] D. Saff and M. D. Ernst, “An experimental evaluation of continu-
ous testing during development,” in Proc. Int. Symp. Softw. Testing
Anal., Boston, MA, USA, Jul. 2004, pp. 76–85.

[67] D. Saff and M. D. Ernst, “Continuous testing in Eclipse,” in Proc.
27th Int. Conf. Softw. Eng., St. Louis, MO, USA, May 2005, pp. 668–
669.

[68] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multithreaded pro-
grams,” Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.

[69] SConsolidator. (2015, Feb. 13) [Online]. Available: https://github.
com/IFS-HSR/Sconsolidator/

[70] An Eclipse plug-in supporting the Scribble domain specific
language. (2014, Oct. 2) [Online]. Available: https://github.com/
glozachm/scribble-plug-in/

[71] A. Shankar and R. Bod�ık, “Ditto: Automatic incrementalization of
data structure invariant checks (in Java),” in Proc. Conf. Programm.
Lang. Design Implementation, San Diego, CA, USA, Jun. 2007,
pp. 310–319.

[72] Smart save plug-in. (2014, Sep. 21) [Online]. Available: http://
marketplace.eclipse.org/content/smart-save

[73] SonarQube. (2015, Jan. 29) [Online]. Available: http://www.
sonarqube.org/

[74] Sureassert UC. (2015, Jan. 26) [Online]. Available: http://www.
sureassert.com/uc/

[75] TSLint. (2015, Feb. 13) [Online]. Available: https://github.com/
palantir/eclipse-tslint/

[76] An Eclipse plug-in supporting the TypeScript domain specific lan-
guage. (2015, Feb. 13) [Online]. Available: https://github.com/
palantir/eclipse-typescript/

[77] Voldemort. (2014, Sep. 21) [Online]. Available: http://www.
project-voldemort.com/voldemort/

[78] E. M. Wilcox, J. W. Atwood Jr., M. M. Burnett, J. J. Cadiz, and C. R.
Cook, “Does continuous visual feedback aid debugging in direct-
manipulation programming systems?” in Proc. Conf. Human
Factors Comput. Syst., Atlanta, GA, USA, Mar. 1997, pp. 258–265.

[79] An Eclipse plug-in supporting the NesC domain specific lan-
guage. (2015, Feb. 13) [Online]. Available: https://github.com/
mimuw-distributed-systems-group/wNesC-Eclipse-Plug-in/

[80] Xtext. (2014, Oct. 2) [Online]. Available: https://www.eclipse.
org/Xtext/

Kıvanç Muşlu received the BSc degree from the
Koç University in 2010, and the MSc degree from
the University of Washington in 2012. He is cur-
rently working toward the PhD degree in com-
puter science & engineering at the University of
Washington. His research focuses on software
engineering, specifically increasing developer
productivity and reducing developer mistakes by
exploiting copy codebases. He is a member of
the IEEE, the ACM, and ACM SIGSOFT. More
information is available on his homepage: http://

www.kivancmuslu.com/.

Yuriy Brun received the MEng degree from the
Massachusetts Institute of Technology in 2003,
and the PhD degree from the University of South-
ern California in 2008. He is an assistant professor
in the School of Computer Science, University of
Massachusetts, Amherst. He completed his post-
doctoral work in 2012 at the University of
Washington, as a CI fellow. His research focuses
on software engineering, distributed systems, and
self-adaptation. He received the US National Sci-
ence Foundation (NSF) CAREER award in 2015,

a Microsoft Research Software Engineering Innovation Foundation
Award in 2014, and an IEEE TCSC Young Achiever in Scalable Comput-
ing Award in 2013. He is a member of the IEEE, the ACM, and ACM
SIGSOFT. More information is available on his homepage: http://www.
cs.umass.edu/~brun/.

Michael D. Ernst is a professor of computer sci-
ence & engineering, University of Washington.
His research aims to make software more reli-
able, more secure, and easier (and more fun!) to
produce. His primary technical interests are in
software engineering and related areas, including
programming languages, type theory, security,
program analysis, bug prediction, testing, and
verification. His research combines strong theo-
retical foundations with realistic experimentation,
with an eye to changing the way that software

developers work. He was previously a tenured professor at MIT, and
before that a researcher at Microsoft Research. More information is
available on his homepage: http://homes.cs.washington.edu/~mernst/.
He is a senior member of the IEEE.

David Notkin (1955-2013) received the ScB
degree from Brown University in 1977 and the
PhD degree from Carnegie Mellon University in
1984. He served as a professor and Bradley chair
of computer science & engineering at the Univer-
sity of Washington, which he joined in 1984. His
research interests were in software engineering
in general and in software evolution in particular.
He received the US National Science Foundation
Presidential Young Investigator Award; served as
the program chair of the first ACM SIGSOFT

Symposium on the Foundations of Software Engineering; served as a
program co-chair of the 1995 International Conference on Software
Engineering; chaired the steering committee of the International Confer-
ence on Software Engineering; served as the general chair of the 2013
International Conference on Software Engineering; served as a charter
associate editor and later as an editor-in-chief of the ACM Transactions
on Software Engineering and Methodology; served as an associate edi-
tor of the IEEE Transactions on Software Engineering; was fellow of the
ACM and IEEE; received the ACM SIGSOFT Distinguished Service
Award, the ACM SIGSOFT Outstanding Research Award, the ACM SIG-
SOFT Influential Educator Award, and the A. Nico Habermann Award;
served as the chair of ACM SIGSOFT; served as the department chair
of Computer Science & Engineering; and received the University of
Washington Distinguished Graduate Mentor Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MUŞLU ET AL.: REDUCING FEEDBACK DELAY OF SOFTWARE DEVELOPMENT TOOLS VIA CONTINUOUS ANALYSIS 19

